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Abstract  9 

Drought is the costliest hazard among all natural disasters. Despite the significant improvements 10 

in drought modeling over the last decade, accurate provisions of drought conditions in a timely 11 

manner is still a major research challenge. In order to improve the current drought monitoring 12 

skills, this study presents a land data assimilation system by merging the remotely sensed surface 13 

soil moisture with the model simulations with the use of a recently developed particle Markov 14 

chain Monte Carlo (PMCMC) method. To cope with the computational complexity, a modular 15 

parallel particle filtering framework (PPFF) is developed which allows a large ensemble size in 16 

PMCMC applications. The implementation of the proposed system is demonstrated with the 17 

2012 summer flash drought case study over the Contiguous United States (CONUS). Results 18 

from both synthetic and real case studies suggest that the land data assimilation system improves 19 

the soil moisture predictions and the drought monitoring skills. Compared with the U.S. Drought 20 

Monitoring (USDM), the land data assimilation can better capture the drought onset on May 21 

2012 and the drought severity in June and July 2012. This study recommends that the proposed 22 

land data assimilation system based on a high-performance computing (HPC) infrastructure can 23 

better facilitate the drought preparation and response actions.  24 
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1 Introduction 30 

Drought is a complex natural hazard that affects hydrological, environmental, ecological, and 31 

social systems in many ways. Currently, no universal definition of drought exists (Lloyd-32 

Hughes, 2014). Several drought definitions can be found in Wilhite (2000), Keyantash and 33 

Dracup (2002), Mishra and Singh (2010), Sheffield and Wood (2011), and Van Loon (2015). 34 

Generally, drought can be described as a deficiency in precipitation, soil moisture, or 35 

surface/ground water over an extended period, which can have significant negative impacts on 36 

agricultural, ecological, and socio-economic systems. A drought event can be short, lasting for 37 

just a few months, or it can persist for multiple years. 38 

 Among all natural disasters, drought is the most costly hazard (Sheffield et al., 2014). For 39 

example, the North American drought in 1988 resulted in nearly $62 billion loss, which was 40 

more than the cost of the 1993 Mississippi River flood and Hurricane Andrew combined (Ross 41 

and Lott, 2003). The 2012 summertime flash drought event across the Central U.S. caused a 42 

major curtailment in crop yields, and resulted in about $12 billion economic loss (Hoerling et al., 43 

2014). One possible reason for such huge losses from a drought event is the lack of prompt 44 

preparation and effective response actions due to insufficient knowledge of the drought 45 

development behavior. Different from other natural disasters, drought has a slow onset and 46 

develops over large areas, which makes it difficult to detect until severe damage has already 47 

occurred (Wood et al., 2015). Therefore, a drought monitoring system that can detect drought 48 

conditions in a timely manner is essential for drought preparedness and risk reduction 49 

(Ahmadalipour et al., 2017; Andreadis et al., 2005; Hao et al., 2014; Maurer et al., 2002; 50 

Sheffield et al., 2014). 51 
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 The current operational drought monitoring systems generally use the simulated soil 52 

moisture from hydrologic models to monitor drought conditions. For instance, the Climate 53 

Prediction Center (CPC) soil moisture data sets operationally used in the U.S. Drought 54 

Monitoring (USDM) (Svoboda et al., 2002) is based on a one-layer leaky bucket model. 55 

Although model simulations can provide consistent long-term soil moisture data sets at a 56 

continental scale, these soil moisture estimates are potentially biased due to the errors in model 57 

parameters, forcing data, and deficiencies in the model structure (Chaney et al., 2015; DeChant 58 

and Moradkhani, 2014; Moradkhani and Sorooshian, 2008; Samaniego et al., 2013; Yan and 59 

Moradkhani, 2016). As a result, the biased soil moisture may lead to sub-optimal drought 60 

monitoring skills.  61 

A plausible approach to improve simulated soil moisture is to exploit the remotely sensed 62 

observations to update the soil moisture states in the model. This method of integrating 63 

observations and model simulations is referred to as data assimilation (DA) (Moradkhani, 2008). 64 

The assimilation of satellite soil moisture into a hydrologic model has received increasing 65 

attention and there have been numerous studies that have investigated the effects of assimilation 66 

of remotely sensed data on soil moisture predictions (Brocca et al., 2012; De Lannoy et al., 2007; 67 

Draper et al., 2012; Montzka et al., 2011; Reichle et al., 2008; Yan et al., 2015). While these 68 

studies have suggested improvements on soil moisture predictions, few of the studies actually 69 

quantified the improvements on the end-use application such as drought monitoring skill (Kumar 70 

et al., 2014a). Different from the studies focused on the soil moisture predictions, which can be 71 

performed at point or watershed scale, drought develops at regional to continental scales and 72 

therefore, it generally requires hydrologic modeling at large-scale (DeChant and Moradkhani, 73 

2015; Hoerling et al., 2014). Compared to the model forward run, the large-scale DA is far more 74 
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computationally expensive. Because of this computational complexity, the majority of previous 75 

large-scale satellite soil moisture DA studies were based on the ensemble Kalman filter (EnKF) 76 

with the use of small ensemble size (12–20) (Kumar et al., 2014b, 2009; Pan and Wood, 2010; 77 

Yin et al., 2015). 78 

Although the successful applications of the EnKF have been reported in the above 79 

studies, the EnKF technique has some inherent features resulting in sub-optimal performances in 80 

hydrologic applications (Abbaszadeh et al., 2018; DeChant and Moradkhani, 2012; Dong et al., 81 

2015; Leisenring and Moradkhani, 2011; Lorentzen and Naevdal, 2011; Yan et al., 2017). First, 82 

the EnKF uses only the first- and second-order statistical moments and assumes the model and 83 

observation error distribution to be Gaussian, which is violated in the nonlinear and non-84 

Gaussian hydrologic system. Second, the updating step within the EnKF is based on a linear 85 

equation. As is the case in most hydrologic models, the observation model (or observation 86 

operator) is nonlinear, therefore, such an updating rule may not be correct since the posterior 87 

ensemble is not a sample from the posterior probability density function resulted from the Bayes’ 88 

law (Lorentzen and Naevdal, 2011). Third, the EnKF technique violates mass conservation (not 89 

preserving the water balance) because water is removed from or added to the model by the 90 

updating formulation, which may lead to non-physical model state values. For drought 91 

applications, the closure of the water balance is especially important because a moderate change 92 

of soil water due to imbalanced water budget can result in a category change of drought severity. 93 

The use of small ensemble size (12–20) in these studies further deteriorates the EnKF 94 

performances in drought monitoring because such small ensemble size is insufficient to represent 95 

the posterior distributions.  96 
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To overcome the above EnKF problems, data assimilation by means of particle filter (PF) 97 

has been recommended as an alternative approach in hydrologic applications (Dong et al., 2015; 98 

Montzka et al., 2011; Moradkhani et al., 2012; Noh et al., 2011; Plaza et al., 2012; Yan et al., 99 

2017). In comparison to the EnKF, the PF can preserve the water balance and relaxes the 100 

Gaussian assumption of error distributions, which allows the PF to potentially characterize 101 

skewed or multimodal posterior distributions. This is accomplished by resampling the model 102 

state or state-parameter ensemble, as opposed to the linear updating rule of the EnKF. In other 103 

words, the PF can lead to a more complete representation of the posterior distribution for a 104 

nonlinear and non-Gaussian hydrologic system. In the literature, a few studies have compared 105 

the effectiveness and robustness of the EnKF and PF in hydrologic predictions, and they 106 

suggested that the PF is a more effective and robust data assimilation technique. For instances, 107 

Leisenring and Moradkhani (2011) examined the performances of EnKF and PF on snow water 108 

equivalent (SWE) predictions with the assimilation of SNOTEL observations. They found out 109 

that the PF reduced the root-mean-square-error (RMSE) of SWE predictions from the EnKF by 110 

about 33%. DeChant and Moradkhani (2011) assessed both the EnKF and PF techniques on 111 

SWE predictions with the assimilation of satellite brightness temperature data. Their results 112 

suggested that PF provided more accurate predictions than EnKF. Van Delft et al. (2009) 113 

compared the use of EnKF and PF on streamflow predictions and suggested PF approach led to a 114 

lower RMSE value. Pasetto et al. (2012) found out that PF is a more robust method in soil 115 

moisture assimilation because Gaussian approximation in the EnKF led to a state estimation that 116 

is inconsistent with the physics of the model. DeChant and Moradkhani (2012) further provided 117 

a comprehensive robust assessment between the EnKF and PF on streamflow predictions. They 118 

demonstrated that the PF is a more robust technique because the streamflow predictions from the 119 
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EnKF were consistently overconfident, and occasional filter divergence was also identified in the 120 

EnKF.  121 

Despite the advantages of PF, few satellite soil moisture DA studies used PF approach 122 

and the majority of these PF studies were limited to point to watershed scale (Montzka et al., 123 

2011; Plaza et al., 2012; Yan et al., 2015; Yan and Moradkhani, 2016), and fewer have attempted 124 

to implement PF for large-scale drought analysis (e.g., Yan et al., 2017). The main obstacle for 125 

the PF to be applied in large-scale drought application is the limited computational power of 126 

modern computers, which means that we cannot have enough model ensembles to simulate the 127 

posterior distributions and avoid weight degeneration (filter collapse due to few particles having 128 

significant weight). Compared to the EnKF method, the successful application of PF requires a 129 

larger ensemble size. The current EnKF based large-scale drought monitoring system (with the 130 

use of small ensemble size) is already compute-intensive; while the PF needs to increase that 131 

demand by 1–2 orders of magnitude. One possible solution allowing the use of PF in large-scale 132 

drought applications is to benefit from the parallel computing technique in a high-performance 133 

computing (HPC) cluster infrastructure, which requires the parallel implementations of DA 134 

algorithm. Currently, open source parallel DA library is available in the community such as the 135 

Parallel Data Assimilation Framework (PDAF) (Nerger and Hiller, 2013). The PDAF is 136 

developed at the Computing Center of the Alfred Wegener Institute based on Fortran code 137 

compilable in the Unix/Linux environment and provides fully implemented and optimized data 138 

assimilation based on the Kalman filtering algorithms (Ridler et al., 2014). Although the PDAF 139 

can provide parallel simulation for large-scale DA applications on a HPC cluster, the PF 140 

technique is not included in the PDAF up to date. 141 
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 Given the above discussions, the main motivation of this study is to advocate the use of 142 

PF approach in large-scale drought applications by using the parallel computing technique in the 143 

HPC cluster. Specifically, a parallel PF modular is needed to be compatible with modern HPC 144 

infrastructure. Therefore, the goals of this study are to: 145 

1. develop a modular parallel particle filtering framework (PPFF) which allows a large 146 

ensemble size in large-scale (continental to global scale) drought applications; 147 

2. examine the effectiveness of PPFF by comparing its soil moisture predictions to the 148 

results from the EnKF based data assimilation system; and 149 

3. implement the large-scale assimilation of remotely sensed soil moisture into a distributed 150 

hydrologic model and provide a quantitative assessment of its impact toward drought 151 

monitoring skills with the use of PPFF.” 152 

The remaining of the paper is organized as follows: section 2 describes the framework of the 153 

proposed PF based drought monitoring system, which includes the dynamical hydrologic 154 

modeling, the DA algorithm, and the parallelization of the DA. Section 3 assesses the drought 155 

monitoring system over the Contiguous United States (CONUS) for both synthetic and real case 156 

studies. Finally, section 4 concludes the paper. 157 

 158 

2 Drought Monitoring System  159 

In this study, the proposed drought monitoring system is composed of two parts: dynamical 160 

hydrologic molding and land data assimilation system. First, the hydrologic model is calibrated 161 

for the study region of interest, then the remotely sensed soil moisture observations are 162 

assimilated into the calibrated hydrologic model through the land data assimilation system. 163 

Figure 1 illustrates the framework of the proposed drought monitoring system.  164 
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 165 

Figure 1. The flowchart of the proposed drought monitoring system. The three probability 166 

distributions associated with the meteorological forcing, remotely sensed soil moisture, and soil 167 

moisture states represent the corresponding uncertainties. 168 

 169 

2.1 Dynamical Hydrologic Modeling  170 

The Variable Infiltration Capacity (VIC) model is a physically based and semi-distributed 171 

macroscale hydrologic model. The VIC model was originally developed by Liang et al. (1994) 172 

and later improved by Lohmann et al. (1998) and Liang and Xie (2001). The VIC model includes 173 

both water-balance and energy-balance parameterizations and two types of runoff-yielding 174 

mechanisms. In this model, the land surface is simulated as a gird of large, flat, and uniform 175 

cells. The VIC model balances both surface energy and water over each grid cell. The VIC 176 

model represents sub-grid variability in soils, topography, and vegetation, and this allows 177 

representation of the non-linear dependence of the partitioning of precipitation into infiltration 178 

and direct runoff as determined by soil moisture in the upper layer and its spatial heterogeneity. 179 

The VIC model partitions the vadose zone into three soil layers. The first soil layer has a fixed 180 

depth of 10 cm and responds quickly to changes in surface conditions and precipitation. The 181 

second and third soil layer depths are spatially varied and the same as in the Land Data 182 

Assimilation System (LDAS) retrospective simulations (Maurer et al., 2002). Moisture 183 

movement between the three soil layers is governed by gravity drainage, with diffusion from the 184 
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second to the first layer allowed in unsaturated conditions. Water drained from the second layer 185 

to the third layer is entirely controlled by gravity. Base flow is a non-linear function of the soil 186 

moisture content of the third layer (Andreadis et al., 2005; Andreadis and Lettenmaier, 2006; 187 

Shukla et al., 2011). The minimum meteorological forcing data for VIC model are the time series 188 

of daily or sub-daily precipitation, maximum and minimum air temperature, and wind speed. In 189 

this study, the root-zone soil moisture is estimated as the total column soil moisture (the sum of 190 

the three soil layers) as suggested by Shukla et al. (2011). 191 

 192 

2.2 Data Assimilation Algorithm  193 

Following Moradkhani (2008), the state-space models that describe the generic earth system are 194 

as follows: 195 

   �� = ������, 	�, 
� + 
� (1) 

 �� = ℎ���� + �� (2) 

where �� ∈ ℝ�  is a vector of the uncertain state variables at current time step, �� ∈ ℝ�  is a 196 

vector of observation data, 	� is the uncertain forcing data, 
 ∈ ℝ� is the model parameters, ℎ�∙� 197 

is a non-linear function that relates the states �� to the observations ��, 
� represents the model 198 

error, and �� indicates the observation error. The errors 
� and �� are assumed to be white noise 199 

with mean zero and covariance �� and ��, respectively. 200 

 201 

2.2.1 Ensemble Kalman Filter  202 

The EnKF is an ensemble version of the Kalman filter, which does not require for a liner model 203 

and the estimation of priori model covariance (Evensen, 1994). In the EnKF, an ensemble of 204 
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state vectors is propagated forward in time. Each time an observation becomes available, the 205 

state vector of each ensemble member is updated as follows: 206 

 ���� = ���� + ���� � ����� + ��� (3) 

where ���� is the posterior state vector for the  �! ensemble member, ���� is the priori state vector, 207 

�  is the linearized observation operator ( � = "ℎ "�⁄ ) to translate from model space to 208 

observation space, and � is the Kalman gain factor which is calculated as: 209 

 � = $��%��$��% + ����� = &'(�&(( + �����
 (4) 

where $�  is the model state error covariance, $��% = &'(  is the covariance of the state 210 

ensembles with the predicted observations, and �$��% = &(( is the variance of the predicted 211 

observations.  212 

 213 

2.2.2 Particle Filter Markov Chain Monte Carlo 214 

Under the assumption of independence in time series, the posterior distribution of the state 215 

variables �� given a realization of the observations ��:� is as follows:  216 

 *���|��:�� = *���|��:���, �� 	� = *���|���*���|��:����
*���|��:����

= *���|���*���|��:����
- *���|���*���|��:����.��

 

(5) 

   *���|��:���� = - *��� , ����|��:����.���� =
-*���|�����*�����|��:����.���� 

(6) 

where *���|��� is the likelihood, *���|��:���� is the prior distribution, and *���|��:���� is the 217 

normalization factor. The marginal likelihood function *���:�� can be computed as: 218 

 
*���:�� = *���� / *��0|��:0���

�

012
 

(7) 
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where the normalization factor *���|��:���� is: 219 

 *���|��:���� = 3 *��� , ��|��:����.�� = 3 *���|��� *���|��:����.�� (8) 

Equation (5) shows mathematically that a posterior conditional probability distribution of 220 

model predicted states ��, given all previous observations ��:��� and the current observation �� 221 

can be computed sequentially in time. In practice, equation (5) does not have an analytic solution 222 

except for few special cases. Instead, the posterior distribution *���|��:��  is usually 223 

approximated using a set of Monte Carlo (MC) random samples as: 224 

 
*���|��:�� ≈ 5 6���7��� � ����

8

�1�
 (9) 

where 6��� is the posterior weight of the  �! particle,  7 is the Dirac delta function, and 9 is the 225 

ensemble size. The normalized weights are calculated as follows: 226 

 6��� = 6���
*���|���	�

∑ 6���*���|����8�1�
 (10) 

where 6���  is the prior particle weights, and *���|����  can be computed from the likelihood 227 

;���|����. Generally, a Gaussian distribution is used to estimate	;���|����:  228 

 ;���|���� = 1
=�2?��|��|

@�* A� 1
2 B�� � ℎ�����C

% ���� B�� � ℎ�����CD (11) 

A resampling operation is necessary to minimize the weight degeneration, where all but few of 229 

the importance weights are close to zero. Moradkhani et al. (2005) suggests resampling the 230 

particles with a probability greater than the uniform probability. After resampling, all the particle 231 

weights are set equal to 1 9⁄ .  232 

Regardless of the resampling approach, the successful application of PF still requires a 233 

large ensemble size to avoid the potential weight degeneration. For large-scale drought 234 
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applications, however, a relatively small ensemble size (50 to maybe 500) can be affordable 235 

given the capabilities of the user’s HPC resource and study domain. To further reduce the weight 236 

degeneration problem in large-scale applications, the particle filter with sampling importance 237 

resampling (PF-SIR) algorithm can be combined with Markov chain Monte Carlo (MCMC) 238 

(Moradkhani et al., 2012). The particle Markov chain Monte Carlo (PMCMC) was first proposed 239 

in statistical literature by Andrieu et al. (2010). Moradkhani et al. (2012) re-designed the 240 

PMCMC to address both states and parameters while integrating the variable variance multiplier 241 

approach for a more objective perturbation of observation during the assimilation process 242 

(Leisenring and Moradkhani, 2012). In comparison to PF-SIR, the PMCMC achieved higher 243 

accuracy in hydrologic predictions and required a smaller ensemble size (Moradkhani et al., 244 

2012). As such, PMCMC is more robust than PF-SIR as it is less prone to the weight degeneracy 245 

and sample impoverishment problems (loss of diversity in ensembles) (Abbaszadeh et al., 2018; 246 

Andrieu et al., 2010; Moradkhani et al., 2012), which makes the filter more efficient for 247 

computationally-intensive large-scale applications.  248 

In this paper we just consider the use of PMCMC for state updating (Andrieu et al., 249 

2010). The PMCMC is an extension of the PF-SIR and uses the PF-SIR to design efficient 250 

proposal distributions for MCMC algorithm. The PMCMC consists of the following three steps: 251 

1) initialization ( E = 0 ): run PF-SIR targeting *���|��:�� , sample G��0�~*���|��:��  and let 252 

*���:���0� denote the corresponding marginal likelihood estimate, 2) iteration (E I 1): sample 253 

G�∗~*���|��:�� again and let *���:��∗ denote the corresponding marginal likelihood estimate, and 254 

3) calculation of the acceptance ratio as: 255 

 K L M1, *���:��∗
*���:���E � 1�N (12) 
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and set G��E� = G�∗ and *���:���E� = *���:��∗; otherwise set  G��E� = G��E � 1� and *���:���E� =256 

*���:���E � 1�.  257 

 258 

2.3 Parallelization of Data Assimilation  259 

Data assimilation with dynamical distributed hydrologic models (such as the VIC model) are 260 

computationally expensive and often need to be run on high-performance computing (HPC) 261 

architectures. Especially for simulations which are performed at a large-scale with a high spatial 262 

resolution, code parallelization is an essential requirement to reduce computational times. 263 

Fortunately, the natural parallelism in the 1D ensemble DA algorithm can be used to implement 264 

parallel programming, since each ensemble member can be simulated independently from the 265 

others.  266 

 For code parallelization, depending on the HPC architecture, either a shared memory or a 267 

distributed memory paradigm can be used. The Open Multi-Processing (OpenMP) application 268 

programming interface (API) is an implementation of multithreading in a shared memory 269 

environment, which means that the memory is accessible by all threads simultaneously. As an 270 

alternative, the Message Passing Interface (MPI) is a de facto standardized and portable 271 

message-passing system running on a distributed memory system, such as computer clusters. 272 

Each processor in the distributed memory system has its own private memory and only the data 273 

belonging to a processor itself can be directly accessible. For data belonging to other processors, 274 

an explicit communication of data between the processors can be performed via the ethernet 275 

networks. 276 

Depending on the HPC architecture, two parallelization strategies for the ensemble DA 277 

can be devised: the model decomposition and the domain decomposition (Nerger and Hiller, 278 
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2013). The model decomposition schema is to distribute the ensemble members of DA over all 279 

available processors, indicating that the study domain grid cell is simulated in sequentially while 280 

the ensemble members within each grid cell are simulated in parallel, namely ensemble member 281 

simulation is set as a precedent in parallel computing. For instance, if we have a 300 processors 282 

cluster and want to run DA on a study domain with 300 grid cells where each grid cell is 283 

associated with 300 ensemble members; the model decomposition schema first distributes the 284 

300 ensemble simulations associated with the first grid cell over the 300 processors. It starts to 285 

simulate the second grid cell only if the simulations of the first grid cell are finished.  However, 286 

the model decomposition schema would lead to a significant amount of data communication 287 

between different processors in each state updating step of DA. The frequent message-passing 288 

between all the processors in each time step may produce a communication overhead in MPI. 289 

Therefore, the model decomposition schema is more suitable for small-scale DA applications 290 

using OpenMP in a computer system with shared-memory (Ridler et al., 2014). 291 

As an alternative, the domain decomposition implementation gains more popularity in the 292 

community due to the avoidance of the huge amount of message-passing. The domain 293 

decomposition distributes the large-scale study domain over all available processors, indicating 294 

that the grid cell is simulated in parallel while the ensemble member within each grid cell is 295 

simulated sequentially, that is grid cell simulation is set as a precedent in parallel computing. Use 296 

the same example as the above paragraph, the domain decomposition schema first distributes the 297 

300 study domain grid cells over the 300 processors and all the grid cells are simulated 298 

simultaneously. Since each grid cell is associated with only one processor, the 300 ensemble 299 

simulations are simulated sequentially in each processor. As a result, each processor only 300 

updates the grid cell states which belong to its own and other grid cell states can be updated 301 
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concurrently. The huge amount of message-passing at each time step is therefore relaxed in 302 

domain decomposition implementation. Currently, the domain decomposition is a standard 303 

parallelization strategy in the large-scale dynamical models using MPI. 304 

Figure 2 illustrates the domain decomposition implementation in the proposed parallel 305 

particle filtering framework (PPFF). The PPFF is processed in the following five steps: 306 

1. Initialization of MPI; 307 

2. Initialization of the PMCMC; 308 

3. Model initialization for VIC; 309 

4. For time = start date to end date 310 

a. parallel simulation of fluxes and states in each gird cell to the next time step; 311 

b. for each grid cell, sequential simulation of fluxes and states for each ensemble 312 

member; 313 

c. for each grid cell, filtering the fluxes and states by PMCMC; 314 

d. for each grid cell, updating the initial conditions for the VIC run in next time step; 315 

5. Finishing the VIC simulation and PPFF. 316 
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 317 

Figure 2. The flow diagram of the parallel particle filtering framework (PPFF) using Message 318 

Passing Interface (MPI). The domain decomposition parallel strategy is used in the PPFF: each 319 

grid cell is simulated in parallel while each ensemble member is simulated sequentially.  320 

 321 

3 Case Study 322 

3.1 Study Area and Drought Event  323 

The present study aims to implement the drought monitoring framework over the Contiguous 324 

United States (CONUS). The 2012 summertime (May–August) flash drought over the Central 325 

U.S. is selected as the case drought event in this study. The 2012 summer drought event 326 



17 

 

developed rapidly in May and reached peak intensity in August. The two main causes for this 327 

drought event were the precipitation deficits and high temperatures (Hoerling et al., 2013). 328 

Concurrence of substantial precipitation deficits and high temperatures resulted in decreased soil 329 

moisture and propagation of drought from meteorological drought to agricultural drought. 330 

According to the USDM, during May–August, over three-quarters of CONUS experienced at 331 

least abnormally dry drought conditions and the Central U.S. experienced severe to exceptional 332 

drought conditions.  333 

This drought event garnered the attention of stakeholders, water managers, and policy 334 

makers due to two reasons. First, it is the most severe seasonal drought event in 117 years with 335 

significant economic loss (about $12 billion) and impacts on food security and commodity prices 336 

(PaiMazumder and Done, 2016). Using Arkansas state as an example, until 13 July 2012, the 337 

U.S. Department of Agriculture (USDA) had issued a drought disaster declaration for 69 out of 338 

75 Arkansas counties. Second, the current operational drought monitoring and forecasting 339 

systems failed or underestimated the 2012 summer drought event. The National Oceanic and 340 

Atmospheric Administration (NOAA) CPC’s Seasonal Drought Outlook (SDO) issued on 17 341 

May 2012 failed to forecast this event (Hoerling et al., 2014), and the USDM also did not capture 342 

this event until late June 2012 (Mo and Lettenmaier, 2015).  343 

In addition to the severe 2012 summer drought case, we also examine the performance of 344 

the drought monitoring system on a non-drought year of 2010 to check whether the land data 345 

assimilation system corrects false positive drought. According to the USDM, the percentage area 346 

of CONUS experiencing moderate to exceptional drought were only between 8% and 10% 347 

through the 2010 summer. This summer minimum is the smallest percent area in moderate to 348 

exceptional drought for the CONUS during the 10-year history of the USDM since 2000. 349 
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 350 

3.2 Meteorological Forcing Data 351 

The precipitation, maximum and minimum temperature, and wind speed data (January 1, 1979 to 352 

present) were acquired from the Phase 2 of the North American Land Data Assimilation System 353 

(NLDAS-2) (Xia et al., 2012). The NLDAS-2 was developed upon the first phase of NLDAS 354 

(NLDAS-1) project, which was initiated to generate reliable initial land surface states to coupled 355 

atmosphere-land models and improve weather predictions. The majority of NLDAS atmospheric 356 

forcing data is derived from the North American Regional Reanalysis (NARR) which features a 357 

32-km spatial resolution and a 3-hour temporal resolution. Besides the precipitation, temperature, 358 

and wind speed, the NARR forcing data also includes the specific humidity, surface pressure, 359 

incoming solar radiation, and incoming longwave radiation. The NLDAS software is used to 360 

interpolate the coarse-resolution NARR data to the finer-scale 1/8° NLDAS grid and to the one-361 

hour NLDAS temporal resolution (Xia et al., 2012). In this study, the hourly NLDAS-2 primary 362 

forcing data were aggregated into daily time step for DA applications. 363 

 364 

3.3 Remotely Sensed Soil Moisture 365 

The blended microwave soil moisture climate change initiative (CCI) products v02.2 released on 366 

February 2016 are used in this study (Dorigo et al., 2017; Y. Y. Liu et al., 2011). The CCI soil 367 

moisture are merged from four passive and two active microwave products, including the 368 

Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager 369 

(SSM/I), Tropical Rainfall Measure Mission (TRMM) Microwave Imager (TMI), Advanced 370 

Microwave Scanning Radiometer for Earth Observing System (AMSR-E), Advanced Microwave 371 
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Instrument (AMI), and Advanced Scatterometer (ASCAT). It is noted that more updated CCI 372 

products exist at present, which are expected to provide better performances.  373 

 According to Y. Y. Liu et al. (2012), the CCI merged soil moisture products are obtained 374 

by rescaling the active and passive retrievals into a common Noah simulated soil moisture 375 

climatology in the Global Land Data Assimilation System version 1 dataset (GLDAS-1-Noah), 376 

with the use of quantile mapping or cumulative distribution function (CDF) matching approach 377 

(Reichle and Koster, 2004). This method consists of three steps: 1) merging the four passive 378 

products into one dataset from 1978 to 2014; 2) merging the two active products into one dataset 379 

from 1991 to 2014; 3) blending both merged products into one final dataset from 1978 to 2014. 380 

In the final blended soil moisture, passive and active merged products are used for sparsely and 381 

moderately vegetated regions, separately. For transition areas where passive and active products 382 

show similar performances, the average of both products are taken. In this way, the blended soil 383 

moisture can take advantage of active and passive microwave sensors, as active products have 384 

higher accuracy over moderately vegetated regions while passive produces show better 385 

performance over sparsely vegetated regions (Albergel et al., 2009; Wagner et al., 2013). 386 

 The combined CCI soil moisture products are provided at a daily time step with a spatial 387 

resolution of 0.25°. Quality flags of both soil moisture have been used to mask pixels affected by 388 

snow cover, temperatures below 0 °C, dense vegetation, and pixels where the soil moisture 389 

retrieval failed (Dorigo et al., 2015). It is noted that the CCI soil moisture products are selected 390 

in this study due to data availability, since this study focuses on the drought event in 2012. In 391 

addition, the blended CCI product can have more number of observations (higher temporal 392 

resolution) than any single sensor product leading to a better performance of DA application 393 

(Yan et al., 2017). The latest Soil Moisture Active Passive (SMAP) L3 radiometer L-band soil 394 
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moisture products (Das et al., 2011; Entekhabi et al., 2010) issued from 31 March 2015 will be 395 

used for future operational drought monitoring.  396 

 397 

3.4 Drought Monitoring Validation 398 

The proposed PPFF LDAS is mainly for agricultural drought monitoring applications. In 399 

this study, the simulated drought event is characterized with the root-zone soil moisture 400 

percentile. We focus on soil moisture variable because agriculture heavily depends on soil 401 

moisture reserves during crop growths. According to the USDM, five drought intensity 402 

categories are defined based on the soil moisture magnitude:  403 

D0—abnormally dry, if the soil moisture percentile ≤ 30%; 404 

D1—moderate drought, if the soil moisture percentile ≤ 20%; 405 

D2—severe drought, if the soil moisture percentile ≤ 10%; 406 

D3—extreme drought, if the soil moisture percentile ≤ 5%; and  407 

D4—exceptional drought, if the soil moisture percentile ≤ 2%. 408 

One of the main challenges for drought studies is the lack of an objective benchmark for 409 

validations, because no “true” drought data exists in real case studies. In this study, the USDM, 410 

the USDA’s disaster declaration, and the drought economic loss are all used as references to 411 

assess the simulated drought monitoring skills. According to the USDM, during May–August 412 

2012, over three-quarters of the CONUS experienced at least D0 drought conditions and the 413 

Central U.S. experienced D2–D4 drought conditions. The summer drought intensity in Central 414 

U.S can be classified as D3–D4 as it resulted in major curtailment of crop yields, and caused 415 

nearly $12 billion economic damage (Hoerling et al., 2014). Further, the USDA’s drought 416 

disaster declarations are used to quantify the D3–D4 drought extent. USDA declared drought 417 
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disaster in seven Central U.S. states in July and August 2012, including Nebraska, Iowa, Kansas, 418 

Missouri, Oklahoma, Arkansas, and Illinois. Table 1 presents the percentages of counties in each 419 

state under USDA’s drought disaster declarations between July and August 2012. In Table 1, it is 420 

noted that in July 2012, over 70% of counties declared drought disaster for four out of the seven 421 

Central U.S. states (Arkansas, Kansas, Missouri, and Oklahoma). In August 2012, more than 422 

80% of the counties declared drought disaster for the remaining three states (Iowa, Illinois, and 423 

Nebraska).  424 

 425 

Table 1. The percentage of counties under drought disaster declarations by U.S. Department of 426 

Agriculture in July and August 2012 for the seven states in Central U.S. 427 

 428 

States 

Percentage of Counties under  

Drought Declarations issued by USDA 

July August Total 

Arkansas 92.0 8.0 100 

Iowa 0 84.8 84.8 

Illinois 19.6 80.4 100 

Kansas 86.7 13.3 100 

Missouri 100 0 100 

Nebraska 15.1 84.9 100 

Oklahoma 72.7 27.3 100 

 429 

3.5 Synthetic Study 430 

To objectively assess the potential benefit of assimilating satellite surface soil moisture into a 431 

hydrologic model, a synthetic study is first conducted through observing system simulation 432 

experiment (OSSE) (Moradkhani, 2008). The synthetic study includes the following four steps: 433 

1) a “truth” run of hydrologic model with the pre-calibrated model parameters; 2) simulated 434 

satellite surface soil moisture observations, which are generated from the truth run by 435 

incorporating the observation errors; 3) an open loop (OL) run with the perturbed forcing data 436 
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without DA; and 4) the DA step that assimilates the simulated surface soil moisture observations 437 

from step 2 to the model. Then the OL and DA results are compared against the truth simulation 438 

to evaluate the impact of satellite surface soil moisture assimilation. Figure 3 presents the 439 

flowchart of the synthetic study in this study using VIC model. 440 

 441 

 442 

Figure 3. The flowchart of the synthetic study using VIC model to assess the potential benefit of 443 

assimilation of satellite surface soil moisture on drought monitoring. 444 

 445 

3.5.1 Synthetic Truth Simulations 446 

In this study, the VIC model is performed to simulate the soil moisture and reconstruct the 2012 447 

drought conditions over the CONUS domain, at a 1/8° spatial resolution. The model parameter 448 
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files, including the elevations, soil properties, and vegetation cover, are acquired from the VIC 449 

retrospective land surface dataset (Maurer et al., 2002). For synthetic truth simulation, the VIC 450 

model is run in a daily time step using the NLDAS-2 forcing data from 1 January 1979 to 31 451 

December 2015 to produce long-term girded surface and root-zone soil moisture. In this study, 452 

the VIC model is run in water balance mode, which means that the surface temperature is set 453 

equal to the surface air temperature rather than iteratively solving the surface energy budget.  454 

 455 

3.5.2 Error Models in Data Assimilation 456 

To account for uncertainties in forcing data due to sensor errors and spatial heterogeneity, both 457 

precipitation and wind speed errors are assumed to be heteroscedastic and lognormal with a 458 

variance of 25% of the variable’s magnitude. Both maximum and minimum temperature are 459 

assumed to be homoscedastic and normal with a standard deviation of 3 °C. For both synthetic 460 

and the real case studies, the same perturbation errors are used, and the initial state noise is free. 461 

The model structure is considered perfect for synthetic study; while for real case study, the 462 

model structural error is assumed to be normally distributed with a standard deviation equal to 463 

10% of the prediction value. All errors in this study are assumed to be uncorrelated. Error 464 

assumptions are applied with the same magnitude in both the EnKF and PMCMC applications. 465 

The form and magnitude of these errors are based on previous DA studies, where the values were 466 

determined through a manual tuning to achieve reliable predictions (Abbaszadeh et al., 2018; 467 

DeChant and Moradkhani, 2014; Yan et al., 2015; Yan and Moradkhani, 2016). We 468 

acknowledge that these values may not necessarily be optimum.  469 

Following Kumar et al. (2014b), the white noise (standard deviation) for the CCI satellite 470 

soil moisture is assumed to be 0.04 m3/m3 over all grid cells over the CONUS. To account for 471 
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spatial correlations in CCI soil moisture errors, the constant CCI soil moisture error standard 472 

deviation (0.04 m3/m3) is scaled by the ratio of the soil moisture time series standard deviation of 473 

the VIC model to that of the real CCI soil moisture data (separately for each grid cell), resulting 474 

in CCI soil moisture error standard deviations that are spatially distributed (Kumar et al., 2014b; 475 

Q. Liu et al., 2011; Reichle et al., 2007). The synthetic CCI soil moisture are then generated from 476 

synthetic truth simulations by incorporating the scaled CCI soil moisture errors. We 477 

acknowledge that the constant soil moisture error (0.04 m3/m3) assumption before scaling is 478 

somewhat arbitrary. More advanced approaches, such as the triple collocation (TC) method, may 479 

be used to provide better estimations of satellite soil moisture error structure (Gruber et al., 480 

2016). However, successful applications of TC require large numbers of coincident soil moisture 481 

from three independent time series (satellite soil moisture, model simulations, and in-situ 482 

observations), homogeneity of their linear relationships, and error structures. In general, these 483 

assumptions are difficult to realize in practice because of the infrequent spatiotemporal sampling 484 

of satellite and in-situ sensors. (Su et al., 2014).  485 

Contrary to the small ensemble size (12–20) used in the majority of previous satellite soil 486 

moisture DA studies (Kumar et al., 2014b, 2009; Pan and Wood, 2010; Yin et al., 2015), a large 487 

ensemble size of 100 is used in this study, in order to fully quantify the soil moisture posteriors. 488 

The PPFF module is written in Python3 script and all the DA simulations are run on the Linux 489 

Hydra Cluster (24 nodes, 384 processors) located at the Office of Information Technology (OIT), 490 

Portland State University (PSU).  491 

 492 
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3.5.3 EnKF versus PMCMC  493 

Before assessing the drought monitoring skill, we first compare the performances of the EnKF 494 

and PMCMC for root-zone soil moisture predictions. Both experiments are performed by 495 

assimilation of the synthetic satellite surface soil moisture for the period of 1 January 2012 to 31 496 

December 2012. Since the main trust of this study is to investigate whether the PMCMC system 497 

can improve drought monitoring skill for summer 2012, the EnKF versus PMCMC comparison 498 

is based only on one basin as a proof-of-concept. In order to assess the PMCMC performance 499 

over the EnKF, the normalized information contribution (NIC) metric (Kumar et al., 2014b) is 500 

used in this study. The NIC for root-mean-square-error (RMSE) is defined as follows: 501 

 9O& = �PQRS�TU � �PQRVWXWX
�PQRS�TU

 (13) 

where �PQRS�TU  indicates the RMSE values between EnKF and synthetic truth, and 502 

�PQRVWXWX indicates the RMSE values between PMCMC and synthetic truth. If NIC>0, the 503 

PMCMC shows improvement with respect to the EnKF predictions; if NIC<0, the PMCMC 504 

shows degraded performance as compared with the EnKF predictions; and if NIC=1, the 505 

PMCMC results in perfect predictions. 506 

Figure 4a displays the NIC values in the root-zone soil moisture and their spatial 507 

distributions across the Columbia River Basin. The majority of the grid cells show positive NIC 508 

values indicating a better performance of the PMCMC over EnKF. The daily domain-averaged 509 

root-zone soil moisture RMSE (m3/m3) for the EnKF is 0.0039, and it decreases to 0.0019 with 510 

PMCMC (about 51% improvement). To better illustrate this difference, Figure 4b shows the time 511 

series of synthetic truth, EnKF, and PMCMC root-zone soil moisture predictions for one grid cell 512 

with NIC=0.61 (marked as yellow star in Figure 4a). It is observed that though EnKF and 513 

PMCMC show similar performances in winter and spring seasons, the EnKF underestimates the 514 
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soil moisture during summer while the PMCMC predictions are closer to the synthetic truths. As 515 

mentioned in the introduction section, this can be explained as the inherent drawbacks of the 516 

EnKF technique. It is mainly due to inadequacy of linear updating rule for a nonlinear hydrologic 517 

model, leading to over adjustments in the updates (Harlim and Majda, 2010; DeChant and 518 

Moradkhani, 2012). These results come as no surprise and are consistent with previous findings 519 

which had demonstrated the superiority of the PF DA techniques over the EnKF in hydrologic 520 

applications (DeChant and Moradkhani, 2012, 2011; Leisenring and Moradkhani, 2011).  521 

 522 

 523 

Figure 4. (a) The normalized information contribution (NIC) value between the EnKF and 524 

PMCMC root-zone soil moisture predictions (Eq. 13). Positive values indicate that the PMCMC 525 

improves soil moisture prediction as compared to the EnKF; negative values indicate the 526 

degradation over the EnKF. (b) Time series of the marked (yellow star) grid cell root-zone soil 527 

moisture (m3/m3) for the synthetic truth, EnKF, and PMCMC simulation for the period of 1 528 

January 2012 to 31 December 2012. Both NIC values and time series are generated using the 529 

posterior means. 530 

 531 

3.5.4 PMCMC Drought Monitoring  532 

Here we examine the potential benefit of assimilating satellite surface soil moisture on drought 533 

monitoring skill according to the synthetic study flowchart shown in Figure 3. The OL 534 

simulation is run with the perturbed NLDAS-2 forcing data for the period of 1 January 2012 to 535 
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31 December 2012. The ensemble size and perturbation errors in the OL simulation are the same 536 

as in the DA. Figure 5 presents the NIC values (OL versus DA) in the surface and root-zone soil 537 

moisture and their spatial distributions across the CONUS for the 2012. The majority of the grid 538 

cells show the positive NIC values indicating the added-value of the DA. Generally, the 539 

improvements in the surface soil moisture field are consistent with the improvements in the root-540 

zone soil moisture field, with more prominent improvements in the surface soil moisture field. 541 

The improvements in surface field are higher than root-zone field, which is mainly caused by the 542 

weak and highly non-linear cross covariance between the two layers (Kumar et al., 2014a). For 543 

surface soil moisture, the daily domain-averaged RMSE (m3/m3) for the OL is 0.0042, and it 544 

decreases to 0.0027 with DA (about 36% decrease). Similarly, the daily domain-averaged root-545 

zone soil moisture RMSE (m3/m3) value decreases from 0.0034 in the OL to 0.0024 after DA 546 

(about 29% decrease). It is to be noted that several grid cells in Figure 5, show negative NIC 547 

values. From a theoretical perspective, the DA is expected to show improvements over the OL 548 

skills for all grid cells in a synthetic study framework knowing that the observation errors are 549 

synthetically introduced with predefined statistical properties. Here, the negative NIC values can 550 

be explained due to suboptimal choice of the uncertainty magnitude in the synthetic CCI soil 551 

moisture observations. Specifically, in the particle weight estimation using the Gaussian 552 

likelihood function, if the scaled soil moisture observation error is too small (e.g., 0.01 m3/m3), 553 

the PF may result in degenerated particles that is a few particles with larger weights dominate the 554 

rest of the particles and eventually collapse to one particle which poorly approximates the soil 555 

moisture posteriors and eventually resulting in negative NIC values.  556 

 557 
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 558 

Figure 5. The normalized information contribution (NIC) value between the Open-Loop (OL) 559 

and Data Assimilation (DA). The NIC values are generated based on posterior means. The 560 

positive value indicates that the DA improves soil moisture prediction against OL; negative 561 

value indicates the degradation over the OL. (a): Surface soil moisture field. (b): Root-zone soil 562 

moisture filed. 563 

 564 
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In the implementation of the DA, the identifications of model and observation errors are 565 

very unintuitive and the inappropriate selections of observation errors may lead to over/under-566 

confident soil moisture predictions (Y. Liu et al., 2012; Massari et al., 2015). For small-scale DA 567 

applications, such as one soil column DA study (Montzka et al., 2011; Yan et al., 2015), it is 568 

straightforward to manually tune the observation error to ensure that the synthetic framework 569 

performs well. For large-scale DA applications, however, it is not feasible to conclude on a 570 

single ideal manner an optimal error implementation, and some degraded cells are unavoidable. 571 

Similar results from a synthetic study using the EnKF-based DA showed the inferior 572 

performance of DA with respect to  OL ) were also reported by Kumar et al. (2014a) using the 573 

EnKF method. 574 

Leaving the first year as model spin-up period, the soil moisture climatology is the soil 575 

moisture simulations from 1 January 1980 to 31 December 2015. Then, the soil moisture 576 

percentiles generated from the OL and DA monthly integrations are compared against the 577 

corresponding synthetic truth. For instance, to estimate the monthly soil moisture percentile in 578 

October 2010, it is first to take all October soil moisture values over 1980–2015 to construct the 579 

climatological distribution for each grid cell. Then, for any specific grid cell soil moisture value 580 

in October 2010, the corresponding soil moisture percentile can be estimated from the 581 

climatological distribution. Drought monitoring skills between the OL and DA are examined 582 

using the drought extent bias (%), which is estimated as the absolute difference between the 583 

percentage of detected drought area from OL/DA over CONUS and the synthetic true drought 584 

area over the CONUS. 585 

Figures 6 and 7 present the spatial distribution of drought intensities and the drought 586 

extent bias (%), respectively, for five drought categories (D0–D4) over CONUS. The severe 587 
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drought events from May–August 2012 across Central U.S. (Nebraska, Kansas, Oklahoma, Iowa, 588 

Missouri, Arkansas, and Illinois) can be clearly seen in the synthetic truth. In all comparisons of 589 

the four-month drought monitoring, the DA estimates show systematic improvements over the 590 

OL estimates. For the May 2012 case, the OL underestimates the intensity of drought across the 591 

Nevada, Utah, Colorado, and New Mexico whereas DA improves these representations. The 592 

drought extent bias (%) for D0–D4 between the OL and synthetic truth is 5.11%, and it decreases 593 

to 1.28% (about 75% decrease) with DA. For the June and July 2012 cases, the OL 594 

underestimates the intensity of drought across the Central U.S. (i.e., the Kansas, Nebraska, and 595 

Colorado), and DA helps to reduce these large biases. Similarly, drought extent biases (%) 596 

decrease from 5.25% and 4.69% in the OL to 1.02% (about 81% decrease) and 0.53% (about 597 

89% decrease) in the DA, respectively. Although several grid cells in Central U.S. (i.e., Kansas) 598 

show relatively high soil moisture values in August 2012, the DA still helps reduce these biases. 599 

The drought extent bias (%) decrease from 3.02% to 0.34% (about 89% decrease). Overall, these 600 

results are consistent with the trends in Figure 5, which shows the improvements obtained by 601 

DA. 602 

 603 
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 604 

Figure 6. Comparison of the drought monitoring skill between Open-Loop (OL) and Data 605 

Assimilation (DA) for May–August 2012. 606 

 607 
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 608 

Figure 7. The absolute bias of drought extent (%) against the synthetic truth between Open-Loop 609 

(OL) and Data Assimilation (DA) over the CONUS for the period of May–August 2012. 610 

 611 

3.6 Real Case Study 612 

When assimilating the real satellite soil moisture data, the systematic biases between the 613 

satellite-based and model-based soil moisture cannot be avoided (Reichle and Koster, 2004; Su 614 

et al., 2014; Yan et al., 2015; Yilmaz and Crow, 2013). Proper treatment of these systematic 615 

biases is important, as the DA algorithm is designed to work with errors that are strictly random. 616 

The most common approach, the CDF matching (Reichle and Koster, 2004), is implemented in 617 

this study to rescale the satellite observations to the model’s climatology. The CDF matching 618 

approach can correct all the moments of the distribution regardless of its shape. Leaving out the 619 

first year as model spin-up period, the CCI soil moisture products are rescaled from 1980–2014. 620 

For each model gird cell over the CONUS, the model CDF and the satellite observation CDF are 621 

generated for the entire period of 1 January 1980 to 31 December 2014. The CDF matching 622 
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approach is then used to rescale the satellite observations to the model’s climatology, separately 623 

for each grid cell.  624 

For real data study, the perturbation errors are the same as the synthetic study except for 625 

the model error. As mentioned in section 3.5.2, the model structure error is assumed to be 626 

normally distributed with a standard deviation equal to 10% of the prediction value. The DA is 627 

performed by assimilation of the rescaled real satellite surface soil moisture for six-month 628 

duration from 1 February to 31 August for both 2010 non-drought and 2012 drought years.  629 

 630 

3.6.1 2012 Summer Drought Monitoring   631 

Figure 8 presents the OL and DA monthly drought monitoring results across CONUS in 632 

May/June/July/August 2012. Note that the drought monitoring from the DA in these 633 

comparisons are generated using the posterior means. For the purpose of comparison of drought 634 

intensity, the USDM weekly monitoring result in the middle of each month is also presented in 635 

Figure 8. It is noted that although the USDM maps provide a useful monitoring of current 636 

drought conditions, they should not be considered as the “truth” like in the synthetic study since 637 

they are largely based on subjective information about drought at multiple time scales and for a 638 

wide range of impacts (Otkin et al., 2013). In addition, the USDM did not capture the 2012 639 

Central U.S. drought until late June 2012 (Mo and Lettenmaier, 2015; Otkin et al., 2013). 640 

Currently, an objective and quantitative measurement of true drought condition is still 641 

unconcluded in the community, due to inherent complexity of drought phenomenon. However, 642 

the comparisons with USDM are still helpful to assess the capacity of our proposed system to 643 

detect drought events at some level (Anderson et al., 2011; Kumar et al., 2016, 2014b; Otkin et 644 

al., 2013). 645 
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 646 

 647 

Figure 8. Comparison of the 2012 summer drought intensity over the CONUS from Open-Loop 648 

(OL), Data Assimilation (DA), and U.S. Drought Monitoring (USDM). 649 

 650 

Because the USDM did not capture the 2012 summertime drought (May–August) until 651 

late June (Mo and Lettenmaier, 2015), it is important to investigate whether the proposed DA 652 

drought monitoring system can better monitor this drought event, especially in May. It is noted 653 

that the OL results in the real case study are the VIC forward model run with the predefined 654 

parameters and the unperturbed NLDAS-2 forcing data. These results were treated as the “truth” 655 

in the synthetic study. Figure 8 illustrates the added value of assimilating remotely sensed soil 656 

moisture for improving drought monitoring skill. For the May 2012 case (the onset of the 2012 657 
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summer drought), the USDM completely missed the drought onset in Central U.S. (such as 658 

Arkansas, Missouri, Oklahoma, and Kansas). Although the OL shows some improvements over 659 

the USDM, the soil moisture DA provides a better estimate of drought severity, especially for D0 660 

and D1 categories (over Nebraska). For the August 2012 case (the 2012 drought event reached 661 

peak intensity in August), this time the USDM successfully captures this severe drought events 662 

in Central U.S. whereas the OL underestimates the drought intensity and DA provides similar 663 

results as the USDM. For the July 2012 case, since all the counties in Missouri and about 73% 664 

counties in Oklahoma had issued drought disaster declaration (due to severe damage to the 665 

crops) (Table 1), it is reasonable to conclude that the USDM underestimate the intensity in 666 

Missouri and Oklahoma. The USDM only provides D1–D2 drought in these two states, while 667 

DA suggests D3–D4 drought, which is more consistent with the USDA drought declaration. 668 

Similar pattern can be found for June 2012 case, since the crops were damaged in this month, the 669 

USDM and OL underestimate the drought intensity and DA provides a better estimate of drought 670 

severity. Overall, in all four months, DA estimation predicts more intense drought over Central 671 

U.S. and captures the spatial pattern of the intense drought very well relative to the OL and 672 

USDM.  673 

Figure 9 summarizes the detected drought areas over CONUS based on OL, DA, and 674 

USDM. The USDM results are presented in Figure 9 only as a “reference” not “truth”. For the 675 

May 2012 case, the USDM missed the drought events in parts of Central U.S., however, the DA 676 

helps to correct these biases. The detected drought areas over CONUS for OL and DA are 677 

43.82% and 47.91%, respectively. For the August 2012 case, the OL underestimates the drought 678 

intensity whereas DA improves these representations. The detected drought areas increase from 679 

48.17% in the OL to 62.66% after the DA, respectively. Similarly, the DA adds the drought 680 
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monitoring skills for the June and July 2012 cases, from 55.27% and 54.45% by OL to 62.49% 681 

and 65.73% by DA. As a result, compared with OL, the DA provides a more accurate estimate of 682 

drought areas, more consistent with the USDM map of this drought event. 683 

 684 

 685 

Figure 9. Comparison of the drought extent (%) over the CONUS from Open-Loop (OL), Data 686 

Assimilation (DA), and U.S. Drought Monitoring (USDM) for May/June/July/August 2012. 687 

 688 

After the demonstration of the added-value of DA over OL in Figure 9, Figure 10 689 

examines the drought monitoring skill between DA and USDM in details over Central U.S. 690 

Figure 10 shows the percentage area under drought over Central U.S. from the DA and USDM 691 

for each drought category. The monthly USDM drought extent is estimated as the average of the 692 

four weekly USDM products. It is noted that the drought extents presented in Figure 10 are 693 

comprised 7-State region of Nebraska, Iowa, Kansas, Missouri, Oklahoma, Arkansas, and 694 

Illinois. In the May 2012 case, the USDM missed the drought onset and detected less than half 695 
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(44.39%) of the Central U.S. under drought (D0–D4). While DA improves the detection of 696 

drought onset and warns that 78.52% of the Central U.S. is abnormally dry (D0–D4) and more 697 

than half (59.50%) of the Central U.S. is under moderate drought or worse (D1–D4). Although 698 

the USDM started monitoring the severe (D2) and extreme (D3) droughts since 26 June 2012, 699 

the USDM still underestimated the intensity of drought in June and July 2012. Most of the states 700 

in Central U.S. issued the drought disaster declaration in July, which indicated that the crop 701 

plants had been damaged in June (Table 1). For the June 2012 case, only 3.33% of the Central 702 

U.S. is under extreme (D3) and exceptional (D4) drought according to the USDM, while DA 703 

detects 36% of the Central U.S. under extreme (D3) and exceptional (D4) droughts. Same result 704 

can also be found for July 2012 case where DA provides a better estimate of drought severity 705 

showing 58.77% of the Central U.S. under D3–D4 drought, compared to 38.88% with the 706 

USDM. In the August 2012 case, nearly all the counties in Central U.S. issued drought disaster 707 

declaration (Table 1) and USDM provided a close exceptional drought (D4) monitoring skill as 708 

DA. 709 

 710 
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 711 

Figure 10. Comparison of U.S. Drought Monitoring (USDM) and Data Assimilation (DA) 712 

drought monitoring extent for five different drought categories (D0–D4) over the Central U.S. 713 

The drought extent is comprised of the 7-State region of Nebraska, Iowa, Kansas, Missouri, 714 

Oklahoma, Arkansas, and Illinois. 715 

 716 

In summary, compared with the OL, the DA systematically improves the drought 717 

monitoring skill for 2012 drought event from May to August. Compared with the USDM, the 718 

DA could better capture the drought onset in May, and the drought intensity in June and July, 719 

and provide similar results in August. These results demonstrate the added-value of DA to 720 

facilitate the state drought preparation and effective response actions.   721 

 722 

3.6.2 2010 Summer Drought Monitoring  723 

Figure 11 presents the OL and DA monthly drought monitoring results derived based on the 724 

root-zone soil moisture posterior means across the CONUS in May/June/July/August 2010. 725 

Similar to the 2012 drought results, the USDM weekly monitoring result in the middle of each 726 
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month is presented in the figure as a reference. The OL/DA monitoring results and USDM show 727 

a general agreement with each other except for the southwest US. For the June 2010 case, the 728 

USDM shows D0–D1 drought intensity in Arizona and New Mexico, while both OL and DA 729 

results suggest D3–D4 intensities. As the USDM data is a blended product of multiple indicators 730 

and data, we do not expect the modeled drought intensities derived based on a single variable 731 

(soil moisture) to match the USDM results exactly. Though the DA does not agree with the 732 

USDM drought intensity, in the southwestern US, it does not over-predict the drought of summer 733 

2010. For the May 2010 case, the percentages of D0–D4 drought extent over the CONUS are 734 

25% and 24% from DA and OL, respectively. This result suggests that for a non-drought year 735 

event like 2010, the DA performs similar to OL and do not increase false drought detections.  736 

 737 
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Figure 11. Comparison of the 2010 summer drought intensity over the CONUS from Open-Loop 738 

(OL), Data Assimilation (DA), and U.S. Drought Monitoring (USDM). 739 

 740 

4 Conclusion  741 

In this study, a land data assimilation system is proposed through the assimilation of remotely 742 

sensed soil moisture into a distributed dynamical hydrologic model to improve the drought 743 

monitoring skill. The recent developed PMCMC technique is implemented in this study to 744 

quantify the soil moisture posteriors. In order to cope with the large computational demand 745 

required by PMCMC, a modular parallel particle filtering framework is developed in this study 746 

which allows the use of large ensemble size in the PMCMC applications. The proposed drought 747 

monitoring system is assessed based on the 2012 summer flash drought and 2010 non-drought 748 

events over the Contiguous United States. The impacts of assimilating remotely sensed surface 749 

soil moisture on improving soil moisture predictions and drought monitoring are examined. 750 

Results from both synthetic and real case studies suggest that the proposed drought monitoring 751 

system improves the drought monitoring skill and can facilitate the state drought preparation and 752 

declaration. Compared with the state-of-the-art U.S. Drought Monitoring, the proposed system 753 

can better capture the drought onset in May, and the drought intensity in June and July 2012. For 754 

the 2010 non-drought year case study, the proposed system does not lead to over-detection of 755 

false positive drought.  756 

 A limitation of this study is the short data assimilation periods (two years) due to the 757 

limited HPC computational resources. As a result, only two case studies (a drought year and a 758 

non-drought year) are presented in this paper to assess the efficiency of this monitoring system. 759 

We acknowledge that further examination of the proposed approach with more case studies is 760 

desired. A practical path forward that we are currently implementing is to make this system 761 
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operational monthly scale and compare the results with the U.S. Drought Monitor and other 762 

resources from related agencies. 763 
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 769 

Appendix A. Coupling Data Assimilation with Hydrologic Model 770 

Generally, there are two strategies to couple the hydrologic model and DA algorithm: online 771 

coupling and offline coupling (Kurtz et al., 2016; Nerger and Hiller, 2013). For online coupling, 772 

the DA algorithm is a subroutine of the dynamical model routines and they are all compiled into 773 

a single program. Data is exchanged via the main memory. The main advantage of the online 774 

coupling is that it is computationally more efficient since the exchange of data using files can be 775 

avoided. In addition, the model only needs to execute the start-up phase once and there is no 776 

additional start-up cost. However, the online coupling schema requires to modify the model 777 

source code to make it compatible with the DA subroutine. 778 

For offline coupling schema, there are two separate programs used for model execution 779 

and DA, respectively. Data is then exchanged via the input/output (I/O) files of the model. 780 

Obviously, the offline coupling is more ad hoc since there is no need to modify the model source 781 

code. In addition, the offline coupling is the only option when the source code of the model is not 782 

available or not open source. One limitation of the offline coupling is to generate a large amount 783 
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of files on the local drive and produce a lot of I/O overhead. One possible solution is to use the 784 

RAM disk to catch these I/O files.  785 

In general, an ideal parallel DA framework should provide a generic DA environment 786 

that can be coupled with any hydrologic model. Therefore, the offline coupling schema is used in 787 

this study to provide a generic parallel DA framework for the VIC model. Figure A1 describes 788 

the detailed PMCMC-VIC offline coupling interface in this study. In Figure A1, a one-day VIC 789 

model simulation and PMCMC filtering is presented in details. 790 

 791 
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Figure A1. The flowchart of the offline coupling interface of the VIC model and the PMCMC 792 

data assimilation algorithm. The ensemble files indicate the ensemble members of the PMCMC 793 

algorithm. A one-day VIC model simulation and PMCMC updating are shown in this flowchart. 794 

 795 

From Figure A1, the model grid, parameters, and initial conditions are first prepared in 796 

the model initialization phase. The forcing data (precipitation, maximum and minimum 797 

temperature, and wind speed) and remotely sensed observations for all the time steps are held in 798 

the main memory as one data object waiting for simulation. Subsequently, the PMCMC module 799 

initializes the ensemble members and the DA integration is conducted step by step. The remotely 800 

sensed observations and ensemble forcing data are perturbed with the Normal Perturb and 801 

Lognormal Perturb function routines, respectively. After the VIC model simulation for each 802 

ensemble member, the PMCMC module is called again to filter the specified model output (i.e., 803 

soil moisture) and also the initial condition files. At this point, the DA integration is finished for 804 

one-time step and the users can choose whether or not to output the ensemble members of 805 

required variables into the local drive, depending on the available main memory.  806 
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5 List of Captions 1076 

Figure 1 The flowchart of the proposed drought monitoring system. The three probability 1077 

distributions associated with the meteorological forcing, remotely sensed soil moisture, and soil 1078 

moisture states represent the corresponding uncertainties 1079 

 1080 

Figure 2. The flow diagram of the parallel particle filtering framework (PPFF) using Message 1081 

Passing Interface (MPI). The domain decomposition parallel strategy is used in the PPFF: each 1082 

grid cell is simulated in parallel while each ensemble member is simulated sequentially. 1083 

 1084 

Figure 3. The flowchart of the synthetic study using VIC model to assess the potential benefit of 1085 

assimilation of satellite surface soil moisture on drought monitoring. 1086 

 1087 

Figure 4. (a) The normalized information contribution (NIC) value between the EnKF and 1088 

PMCMC root-zone soil moisture predictions (Eq. 13). Positive values indicate that the PMCMC 1089 

improves soil moisture prediction as compared to the EnKF; negative values indicate the 1090 

degradation over the EnKF. (b) Time series of the marked (yellow star) grid cell root-zone soil 1091 

moisture (m3/m3) for the synthetic truth, EnKF, and PMCMC simulation for the period of 1 1092 

January 2012 to 31 December 2012. Both NIC values and time series are generated using the 1093 

posterior means 1094 

 1095 

Figure 5. The normalized information contribution (NIC) value between the Open-Loop (OL) 1096 

and Data Assimilation (DA). The NIC values are generated based on posterior means. The 1097 

positive value indicates that the DA improves soil moisture prediction against OL; negative 1098 
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value indicates the degradation over the OL. (a): Surface soil moisture field. (b): Root-zone soil 1099 

moisture filed. 1100 

 1101 

Figure 6. Comparison of the drought monitoring skill between Open-Loop (OL) and Data 1102 

Assimilation (DA) for May–August 2012. 1103 

 1104 

Figure 7. The absolute bias of drought extent (%) against the synthetic truth between Open-Loop 1105 

(OL) and Data Assimilation (DA) over the CONUS for the period of May–August 2012. 1106 

 1107 

Figure 8. Comparison of the 2012 summer drought intensity over the CONUS from Open-Loop 1108 

(OL), Data Assimilation (DA), and U.S. Drought Monitoring (USDM). 1109 

 1110 

Figure 9. Comparison of the drought extent (%) over the CONUS from Open-Loop (OL), Data 1111 

Assimilation (DA), and U.S. Drought Monitoring (USDM) for May/June/July/August 2012. 1112 

 1113 

Figure 10. Comparison of U.S. Drought Monitoring (USDM) and Data Assimilation (DA) 1114 

drought monitoring extent for five different drought categories (D0–D4) over the Central U.S. 1115 

The drought extent is comprised of the 7-State region of Nebraska, Iowa, Kansas, Missouri, 1116 

Oklahoma, Arkansas, and Illinois. 1117 

 1118 

Figure 11. Comparison of the 2010 summer drought intensity over the CONUS from Open-Loop 1119 

(OL), Data Assimilation (DA), and U.S. Drought Monitoring (USDM). 1120 

 1121 
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Figure A1. The flowchart of the offline coupling interface of the VIC model and the PMCMC 1122 

data assimilation algorithm. The ensemble files indicate the ensemble members of the PMCMC 1123 

algorithm. A one-day VIC model simulation and PMCMC updating are shown in this flowchart. 1124 

 1125 




